Search results for "Adiabatic theorem"

showing 10 items of 30 documents

A consistent microscopic theory of collective motion in the framework of an ATDHF approach

1978

Based on merely two assumptions, namely the existence of a collective Hamiltonian and that the collective motion evolves along Slater determinants, we first derive a set of adiabatic time-dependent Hartree-Fock equations (ATDHF) which determine the collective path, the mass and the potential, second give a unique procedure for quantizing the resulting classical collective Hamiltonian, and third explain how to use the collective wavefunctions, which are eigenstates of the quantized Hamiltonian.

Hamiltonian mechanicsPhysicsGeneral Physics and AstronomyEigenfunctionAdiabatic theoremsymbols.namesakeClassical mechanicsQuantum mechanicssymbolsSlater determinantMicroscopic theoryAdiabatic processWave functionHamiltonian (quantum mechanics)Annals of Physics
researchProduct

Many-Body Quantum Dynamics from the Density

2013

We present a local control scheme to construct the external potential v that, for a given initial state, produces a prescribed time-dependent density in an interacting quantum many-body system. This numerical method is efficient and stable even for large and rapid density variations irrespective of the initial state and the interactions. It can at the same time be used to answer fundamental v-representability questions in density functional theory. In particular, in the absence of interactions, it allows us to construct the exact time-dependent Kohn-Sham potential for arbitrary initial states. We illustrate the method in a correlated one-dimensional two-electron system with different intera…

Physics010304 chemical physicsQuantum dynamicsNumerical analysisGeneral Physics and AstronomyConstruct (python library)State (functional analysis)01 natural sciencesAdiabatic theoremScheme (mathematics)0103 physical sciencesDensity functional theoryStatistical physics010306 general physicsQuantum
researchProduct

Decoherence-free creation of atom-atom entanglement in cavity via fractional adiabatic passage

2005

We propose a robust and decoherence insensitive scheme to generate controllable entangled states of two three-level atoms interacting with an optical cavity and a laser beam. Losses due to atomic spontaneous transitions and to cavity decay are efficiently suppressed by employing fractional adiabatic passage and appropriately designed atom-field couplings. In this scheme the two atoms traverse the cavity-mode and the laser beam in opposite directions as opposed to other entanglement schemes in which the atoms are required to have fixed locations inside a cavity. We also show that the coherence of a traveling atom can be transferred to the other one without populating the cavity-mode.

PhysicsQuantum PhysicsQuantum decoherence[ PHYS.QPHY ] Physics [physics]/Quantum Physics [quant-ph]FOS: Physical sciencesPhysics::OpticsQuantum entanglementAtomic and Molecular Physics and Opticslaw.inventionAdiabatic theoremlawQuantum mechanicsOptical cavityAtomPhysics::Accelerator PhysicsPhysics::Atomic PhysicsAtomic physicsAdiabatic processQuantum Physics (quant-ph)Laser beamsCoherence (physics)
researchProduct

A pseudo-Jahn–Teller model of the photochromic effect in sodium nitroprusside

2003

Abstract A new model for the photochromic effect in sodium nitroprusside Na2[Fe(CN)5(NO)]·2H2O based on the concept of the pseudo-Jahn–Teller effect is proposed. The model takes into account the electron transfer from the Fe2+ ion to the π* orbitals of the NO-ligand as well as the vibronic mixing of three electronic states of the Fe NO fragment through the non-symmetric and full-symmetric modes. The problem is solved within the adiabatic approximation. Under certain conditions the lower sheet of the adiabatic potential is shown to possess three minima with the increasing energies that correspond to the N-bound, sideways bound and O-bound NO group. The barriers between the minima are estimat…

Inorganic ChemistryAdiabatic theoremElectron transferAtomic orbitalChemistryExcited stateMetastabilityJahn–Teller effectMaterials ChemistryPhysical and Theoretical ChemistryAtomic physicsAdiabatic processIonPolyhedron
researchProduct

Mixed-Valence Molecular Unit for Quantum Cellular Automata: Beyond the Born-Oppenheimer Paradigm through the Symmetry-Assisted Vibronic Approach.

2016

In this article, we focus on the electron-vibrational problem of the tetrameric mixed-valence (MV) complexes proposed for implementation as four-dot molecular quantum cellular automata (mQCA).1 Although the adiabatic approximation explored in ref 2 is an appropriate tool for the qualitative analysis of the basic characteristics of mQCA, like vibronic trapping of the electrons encoding binary information and cell-cell response, it loses its accuracy providing moderate vibronic coupling and fails in the description of the discrete pattern of the vibronic levels. Therefore, a precise solution of the quantum-mechanical vibronic problem is of primary importance for the evaluation of the shapes o…

Valence (chemistry)ChemistryBorn–Oppenheimer approximation02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesComputer Science ApplicationsAdiabatic theoremElectron transferVibronic couplingsymbols.namesakeQuantum mechanicsPhysics::Atomic and Molecular ClusterssymbolsVibronic spectroscopyPhysics::Chemical PhysicsPhysical and Theoretical Chemistry0210 nano-technologyQuantumQuantum cellular automatonJournal of chemical theory and computation
researchProduct

Analytic estimation of transition between instantaneous eigenstates of quantum two-level system

2018

AbstractTransition amplitudes between instantaneous eigenstates of a quantum two-level system are evaluated analytically on the basis of a new parametrization of its evolution operator, which has recently been proposed to construct exact solutions. In particular, the condition under which the transitions are suppressed is examined analytically. It is shown that the analytic expression of the transition amplitude enables us, not only to confirm the adiabatic theorem, but also to derive the necessary and sufficient condition for quantum two-level system to remain in one of the instantaneous eigenstates.

PhysicsQuantum PhysicsMultidisciplinaryBasis (linear algebra)Transition (fiction)Operator (physics)lcsh:Rlcsh:MedicineFOS: Physical sciences01 natural sciencesArticle010305 fluids & plasmasAdiabatic theoremAmplitude0103 physical scienceslcsh:Q010306 general physicslcsh:ScienceQuantum Physics (quant-ph)ParametrizationQuantumEigenvalues and eigenvectorsMathematical physics
researchProduct

Oscillator Strengths of Electronic Excitations with Response Theory using Phase Including Natural Orbital Functionals

2013

The key characteristics of electronic excitations of many-electron systems, the excitation energies ωα and the oscillator strengths fα, can be obtained from linear response theory. In one-electron models and within the adiabatic approximation, the zeros of the inverse response matrix, which occur at the excitation energies, can be obtained from a simple diagonalization. Particular cases are the eigenvalue equations of time-dependent density functional theory (TDDFT), time-dependent density matrix functional theory, and the recently developed phase-including natural orbital (PINO) functional theory. In this paper, an expression for the oscillator strengths fα of the electronic excitations is…

Density matrixta114Chemistryexcitation energytiheysfunktionaaliteoriaGeneral Physics and AstronomyTime-dependent density functional theoryelektronitAdiabatic theoremMatrix (mathematics)Quantum mechanicsExcited stateDensity functional theoryeigenvalues and eigenfunctionsPhysical and Theoretical ChemistryAdiabatic processEigenvalues and eigenvectorsJournal of Chemical Physics
researchProduct

Quantum effects in the capture of charged particles by dipolar polarizable symmetric top molecules. I. General axially nonadiabatic channel treatment

2013

The rate coefficients for capture of charged particles by dipolar polarizable symmetric top molecules in the quantum collision regime are calculated within an axially nonadiabatic channel approach. It uses the adiabatic approximation with respect to rotational transitions of the target within first-order charge-dipole interaction and takes into account the gyroscopic effect that decouples the intrinsic angular momentum from the collision axis. The results are valid for a wide range of collision energies (from single-wave capture to the classical limit) and dipole moments (from the Vogt-Wannier and fly-wheel to the adiabatic channel limit).

PhysicsAngular momentumRange (particle radiation)TemperatureGeneral Physics and AstronomyClassical limitCharged particleAdiabatic theoremDipoleQuantum TheoryParticle SizePhysical and Theoretical ChemistryAtomic physicsAdiabatic processAxial symmetryThe Journal of Chemical Physics
researchProduct

Pseudo-Jahn–Teller Origin of the Metastable States in Sodium Nitroprusside

2003

Abstract A new model for the photochromic effect in sodium nitroprusside Na 2 [Fe(CN) 5 (NO)]·2H 2 O based on the concept of the pseudo-Jahn–Teller effect is proposed. The model takes into account the electron transfer from the Fe 2+ ion to the π ∗ orbitals of the NO-ligand as well as the vibronic mixing of three electronic states of the Fe–NO fragment through the non-symmetric and full symmetric modes. The problem is solved within the adiabatic approximation. Under certain conditions, the lower sheet of the adiabatic potential is shown to possess three minima with the increasing energies that correspond to the N-bound, sideways bound, and O-bound NO group. The barriers between the minima a…

Adiabatic theoremElectron transferAtomic orbitalChemistryExcited stateJahn–Teller effectMetastabilityAtomic physicsAdiabatic processIon
researchProduct

Spheroidal and hyperspheroidal coordinates in the adiabatic representation of scattering states for the Coulomb three-body problem

2009

Recently, an involved approach has been used by Abramov (2008 J. Phys. B: At. Mol. Opt. Phys. 41 175201) to introduce a separable adiabatic basis into the hyperradial adiabatic (HA) approximation. The aim was to combine the separability of the Born–Oppenheimer (BO) adiabatic basis and the better asymptotic properties of the HA approach. Generalizing these results we present here three more different separable bases of the same type by making use of a previously introduced adiabatic Hamiltonian expressed in hyperspheroidal coordinates (Matveenko 1983 Phys. Lett. B 129 11). In addition, we propose a robust procedure which accounts in a stepwise procedure for the unphysical couplings that are …

PhysicsBorn–Oppenheimer approximationCondensed Matter PhysicsThree-body problemAdiabatic quantum computationAtomic and Molecular Physics and OpticsMathematical OperatorsAdiabatic theoremMany-body problemsymbols.namesakeQuantum mechanicssymbolsAdiabatic processHamiltonian (quantum mechanics)Journal of Physics B: Atomic, Molecular and Optical Physics
researchProduct